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NOMENCLATURE

a radius of the circular cylinder
ajj added mass or moment coefficient

d gap between the cylinder and the bottom of the sea

D volume of the cylinder

g gravitational acceleration

h depth of water

He J t i A Hankel function

i T

I Modified Bessel function, first kind of order k
Jy Bessel function first kind of order k

K Modified Bessel function, second kind of order k
Mo,Mq as defined by theequation 2.22, 2.23

normal vector

f position vector |
t draft of the cylinder
v velocity
X,Y¥,Z cartesian coordinate system
Yy  Bessel function, second kind of order k
Zk function defined by equation 2.18, 2.19
aij Kronecker delta
e angular position in cylindrical coordinates

p fluid density

%, velocity potentials D -
2 -£E££1§g£125/
w a/g

~Aveirapgygy..

Avatls - . "
Dist Spec:i:) -

w radian frequency




HYDRODYNAMIC COEFFICIENTS FOR VERTICAL CIRCULAR CYLINDERS
AT FINITE DEPTH

ABSTRACT

.

- —ti;’ﬂydrodynamic coefficients for vertical circular cylinders' t finite
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water depth are obtained and presented"}or different &épth to radius

and draft to radius ratios. A summary of equations for computer application

is also presented. Limiting values for heave added mass for zero frequency

is also di scussed.f

1. INTRODUCTION

i Vertical circular cylinders are used in many oceanographic applications
é = such as buoys, drilling rigs and instrumentation platform for their simplicity
: in construction. The available data on their hydrodynamic coefficients is

{' timited and the present numerical procedures are based on finite element
O solutions or the numerical solutions of integral equations. The present
} method is relatively simple to formulate and the solution requires a very
short computer time. The hydrodynamic coefficients such as added mass,

damping coefficients for heave, sway and pitch motions are formulated and

; the results for different depth to radius and draft to radius values are

: ' presented in graphical form.
’ { Havelock (1955) theoretically determined the adced mass and
damping coefficients for a sphere. Kim (1965) studied the hydrodynamic
[ coefficients for elipsoidal bodies oscillating at the free surface. Shen
Wang (1966) calculated the added mass and damping coefficients of sphere
in infinite and finite depth of water. Garrison (1975) gave the general
formulation of these coefficients for arbitrary forms in terms of

distributed singularities and the numerical results for a vertical circular
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cylinder in infinite and finite depth of water. Bai and Yeung (1974)
calculated added mass coefficients for horizontal and vertical cylinders.
Bai (1976) gave the added mass and damping coefficients for axisymmetric
ocean platforms Kritis (1979) had applied the hybrid integral method i
of Yeung to axisymmetric bodies and gave numerical results for a circular A
cylinder.

The various methods developed for the solution of three dimensional 3
axisymmetrical bodies can be summarized as follows. In the first group ‘
of methods Sources and Multipoles are distributed inside the body and their
strength is calculated to satisfy impermeable boundary conditions of the
body. The second set of solutions distributes the singularities at the
surface of the body and an integral equation is used through the use
of Green's theorem. The solution of the integral equation gives the
strength of the singularities. Thirdly, the finite element formulation is
used to find the velocity potential at specified node points. Possible
combinations such as the Hybrid method referred above also exist, combining
the above solutions and reducing the computational effort. The present
formulation follows the general procedure outlined by Garrett (1970) who
studied the scattering of waves at the presence of circular docks.

Although it is of major concern to Naval Architects and ocean
engineers very few data exist on the hydrodynamic coefficients of circular
cylinders. Serving to this aim graphical results covering a large range
of parameters and summary formulas for computer applications are presented

in this paper.

2. FORMULATION AND SOLUTION OF THE PROBLEM

The coordinate system Oxyz is shown in Figure 1. The origin is

at the bottom and Z is positive upwards. The region O<z<h is assumed
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to be filled by an incompressible fluid of density p. The undisturbed
free surface is at z = h. The radius of the cylinder is a and draft
T = h - d.where d is the gap between the cylinder and the bottom. The
standard small motion assumptions are made and the motion is periodic
with frequency w. Anirrotational flow is assumed to exist given by

¢ (r,e,z;t) = Re{$(r,0,2) e luty ' (2.1)

where r,0,z are cylindrical coordinates and e = o corresponds to the

positive x axis. ¢ (r,0,z) is a complex spatial velocity potential which

satisfies: 2 2
3 1 2 1 32 3
Gr*v o * w2 32" 32) 470 (2.2)

in the fluid region.

The boundary conditions for different motions of the cylinder are

given below.
At the free surface 0 - %? =0 atz=h (2.3)
§,=0atz=o (2.4)
3, = VR + G- (F x A) (2.5)

on the body surface where n is the normal to the surface. For heave motion

28

= Vyonz= d (2.6)
and
% - =a ford h 2.7)
5F - oonr=a ford<z< (2.

where VH is the velocity of the cylinder due to heaving motion alone.

For sway motion

30 _ -
F=oonz=d (2.8)
%§-= Vg cose at r = a for d< z< h (2.9)

where V¢ 1s the velocity of the cylinder due to sway motion alone.

3
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For pitching motion

%

3z 8 rcose (2.10)
3 _
57 = @ (h-2) cose (2.11)

where Q is the angular speed of pitching motion.

Following Gerrett's method the fluid is divided into two parts namely
the interior part ABCD and the exterior part ACEF as in Figure 1. The
appropriate solution of velocity potential in each region is found
and the solutions are matched at the boundary so as to have the continuity

in ¢ and its first derivatives are satisfied. The velocity potential in

the interior domain is expressed as
k
o =DK[g P (r,z) +¢kh (r,z)] coskoe for o<r<a o<z<d (2.12)

where k. = o refers to heave motion and k = 1 refers to sway and pitch motion.

¢: and (pz are the particular and homogeneous solutions in the interior
region. *

The particular solutions for different motions are given as

2
) g (r,2) = 2%2 (z2 - 5-) for heave (*) (2.13)
4»:, (rs2) = 0 for sway (2.14)
¢:, (r,2) = 2—],3 (r 22 - 53 )for pitch (2.15)

The particular solutions satisfy the respective kinematic conditions at
the bottom of the cylinder and the bottom of the fluid for r<agiven 4
by the equation (2.4) through (2.11). pk is a constant of dimension
[LZ/T] and is chosen to fit the particular motion of the cylinder.

In the exterior region the velocity potential is given in terms of

eigen expansion.

(*) A particular solution for heave motion is suggested by Professor J.M.
Newman of M.I.T.

4
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¢ =04, (r2) (2.16)
% = BE M (nr) 2o (3) + 3 B K (g 1) Zg (2) (2.17)

where H  is the Hankel function of the first kind of order K = 0,1
and K¢ is the modified Bessel function of the second kind of order K = 0,1.

Bg and Bk are complex unknowns. The orthonormal Zi functions in the interval

q
o<z<h are defined as
2, (2) = No'/2 cosh (m;2) (2.18)
-y 172 i
Zq (z) Nq cos (qu) (2.19)
with
No = 5 [1 + S10h, {2 Moh), (2.20)
o
Ng = 5 [1 + Si0_{2ngh)y (2.21)
q
where mp and mq are the solution of the equations
2
mo tanh (m h) = g (2.22)
2
) (2.23)
mq tan (mqh) 9

To satisfy the continuity of velocity potential at r = a for

0<z<d homogeneous solution defined above is used as follows
k k - . k
b (a,2) + ¢ (a.2) = ¢ ¢ (a,2) (2.24)

%H: (a,z) + ¢,'f (a,2)] = ¢: (a,2) (2.25

for o<z<«d.

The value of homogeneous potential at r = a can be expanded as

k AS k nnz
¢'p (a,z) = + An cos (I3%) (2.26)

For continuity of potential function coefficients Ai's are obtained
using (2.24) as:

d
Ak -2 g [og (2:2) = of (a.2)] cos (22) a2 (2.27)




The particular solution is a known function therefore A:: can

be expressed as

d
A: = % o 0: (a,z) cos ("ﬁ-z—) dz - a,‘: (2.28)
where k=a.,
a : = %- fd ¢: (a,z) cos (nnz/d) dz
o

The interior homogeneous solution can be written now as

k @ I (nwr/h)
o Kirz) = Bk . Ak ﬁ;ﬁfh) cos (B2)  (2.30)

n
1 in r<a, o<z<d
Multiplying the equation (2.25) by Zq (z) and considering that

-g—% (a,0,2) = V cose for d<z<h and integrating between 1imits in o and h
one obtains d
' - k . k
BE - (hm)w Mod) = J 20y (a:2) "2, ) dz+ 85 gy gy

ar
f & (ngh) - K, (nga) ,"%;, (a,2) - 24 (2) dz + s: (2.31-b) {j
forq = 1,2,... fﬁ
O h ~,
B * of -h-g-:-'—z)- Z, (z) dz + m](—- o VI, (z) dz (2.32) 'f
B: = oﬂ ﬁ;_(%',‘_z_)_ Z'q (z) dz + D']F dfh v Zq (z) dz (2.33) M
i+
Where V = 0 for heave, V = V4 for sway and V = q (h-z) for pitch _
motion. *‘,
Inserting the values of ¢ : from (2.17) into equation (2.27) and -l—
K ~

¢p from (2.28) into (2.31-a) and (2.31-b) we obtain
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kK _ k. . I ook, ok
AL =1B +H (ma)*En+q.y B Kk (m@a) Eg - oy (2.34)
® 1 (nwa/d) for n = 0,1,2,...
B = ¢ %—"-ko oo trl My T ‘“‘(“k nmazd) " Eony gk
o a : Tk + 0 (2.35-a)
Qn h) Hk (moa) (moh) Hy/ (moa)
k k n" (nna/d)
By = + q (2.35-b)
(m h) Kk (m a) (mqh) Ky (mqa)
The equations (2.34), and (2.35-a,b) form a coupled system of equations
where A: and Bé are the unknownS. Substituting Bq from (2.35-a,b) into

(2.34), a set of linear equations

Thus:

for Ap are obtained.

k
Ty =-h" forn=0,1, 2, ... (2.36)
j=o nj n n
where (
maa) E_ - E_. Kk(m-a) E_-E
k o on__"oj ® . _am__qj
Y nj {[H (m a) m.h * E K. '(ma) m_h 1 UJ GnJ} (2.37)
K 0 q=1 k ‘'q q
H (m a) 'ek-E » Bk E
k . ( ko’ 0o _on ., I Q- any _ K (2.38)
n HE (mya) moh q=1 mgh n
where an kronecker delta ,

u}‘ = 1"( (§ra/d)/ 1, (jna/d), for j = 1,2,3,... (2.39

k _ kd

Us = 33 ° (2.40
,

Eqn =93 ! Zq(z)cos (nnz/d) dz . (2.41)

(+]

3. HYDRODYNAMIC FORCES AND MOMENTS IN TERMS OF THE VELOCITY POTENTIAL.

The forces and moments are defined by the integrals taken over the

body surface as follows:

i e i




Fe-oe 1/ ds (3.1)

wn

Me-ok 177 (Fxit) ds (3.2)

The added mass and damping coefficients are calculated in the following

manner. a b 1
—%&-+ j a%%—= %b if 3 (r,0,z) ny ds (3.3)
a 6 b 1
5%7' + 4 ;%§-= “gﬁ' 759l (r,e,2)(¥ 1) ds (3.4)
s
a b (1]
241 2 % I e°(r.e.z) nyds (3.5)
.

a b 1

i N el (rez) (R) ds (3.6)
S

a b 1

gg + 4 wg; = ED .Z o! (r,0,2) ny ds (3.7)

where D is the volume of the cylinder, ay and by, are sway added

mass and damping coefficients and A6 and b-|6 are sway induced pitch
3 added moment and damping coefficient, a5y and b22 are the heave added
3 mass and damping coefficients, ag and b61 pitch induced added mass

and damping coefficients. Here ¢! in (3.3) and (3.4) is the potential
1

for sway motions, and ¢ in (3.6) and (3.7) is the potential for pitch

motion.

For reasons of symmetry
416 = 36

big =

W A

dindSsioinn otk
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The heave added mass and damping coefficients in particular are given

by

2, 02 a0 (), W0 (alar (3.8)

pD oD oD o ¢p ’ ¢p \rs :
Using 4); and ¢ﬁ form quation (2.13) and (2.30) into (3.8) and integrating
a b 2 ”M_ Iy (nma/d)
fe2 .72 _ d 1.1 1,0,2 dy ¥ 3 (3.9)
0t oD Ratzos @ tz AT Qe To(ama/d)

Similar calculations are made for other added mass and damping

coefficients and these formulas are given below.

ay, b’l'l ) ! H](moa) [sh(moh)-shmod] - B‘ K](nh?)[sin(nhh)-sin(nhd)]
I T S 7/ () W N, 172 7, (h-d)

(3.10)
%6 , . D66 &

142 Cal e, w172 |
o5t 0 =(rajar (s [torN My mga)- By +q21tq N Ky (mpa) ByD 4

) 1,1 % (-0, 1, (nma/d)
-[..(a) (]3(3))+§(3)A T Nn=0 n An—‘f—-(—m]}

b

:I])g i mlgf h‘-jd {[toNo-”2 H] (moa) BJ) +q§l tq Nq-;ikl ("h a) BC}] *

g @A+l ;B CV -i?—;% 1 (3.12)
where

t, = {(1-%-) s—hé‘%a‘ﬂ + ﬂ%h md)

tg = 10-0 i"—"“ﬁ!‘lﬂ - C———(ﬂ‘%—)—ﬂ———(—u“ r':qd‘ cos (rgd), (3.11)
36 bg1 1/2 shih shmpd . =

1/2

2
_ d 1 - 1 -
1 02" G 1By Hy (mga) Ny mo(h-d) * g Ba kg (mqr)r{;

pla
sin "hh - sin "hd
ma(h-d) (3.13)

g




4, LIMITING VALUES FOR HEAVE ADDED MASS AND DAMPING COEFFICIENTS FOR w = v.

As the frequency of the motion w approaches to zero the values of

m, given by (2.22) goes to zero as well while "hh values tend to qm.
The coefficients of the linear equation (2.36) become real and the
formulation correspond to the case where rigid boundary conditions exist
at the free surface. The only imaginary value is the imaginary part of
Ao which is equal to )

Im A, = Ay, = 5ap (4.1)
From which using 3.9 the damping coefficient is immediately obtained as:

. b 2
1im 22 _ _ma
w+0 wpD  h(h-d) (4.2)

The above result can be also obtained by using the Haskinds relations
given for finite depth by Newmann (1976). The equation(2.36),{ 37 )and

@.38) for heave motion are

o__®Y 0 (o]
A, 205 Aj +hg (4.3)
J=1
® 0 a0 _ ,0
5y g AT (4.4)
Ho (m a) E_.E Kq (ma) E. .E
0 . —on’'-oj
IR 22 oM el A s o) —“——9—1u §1 @5
H (m a) o
8 E 8. E 2
={ 0_00 © "9 g0 _,1_1
R e ¢ Tl -G e
ho Ho(mga) gEon 2 8aqn 2§-1!"
=4 . + } -
n ' (m ) moh g=1 qu Tnn (4.7)

The above equations for very small My values can be written as follows

10
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J

:=]

= a(0,3) + 1 m 28 (0,3) (4.8)

Yoj

Yoy = olmd) + 4 m* s(n.3) (4.9)
where -

a (n.d) = €85+ Adh Li(Gra/d) (yi-n K (qua/h)

T T, Gna/d) a1 Kylamarh)

q (sin (qu/h))2
T(an)2 = (nh)2] T{qd)2 = G2l * (4.10)

2 = K {ana/h) 2 2
n =& A o) Kl a5 (sin and/m?-(-3@) ) - ik 2y (a.10)

2 K_(gra/h) . 2 n n2. 2
= g2 .\ = o 1 as1n gwd[h; - 2(-]! . o(-1) a"dmg”
|"l‘l { ‘"3d 0%z Kltqwa/h) q [({qd)¢-(nn nn Trid 2vhn ¥

9=1

(4.11)

After these preparations taking the 1imit of (4.4) for very small m,

values and using (4.8), (4.9), (4.11) we obtain

2

o Mn (4.12)

" g

£ B H 1AL s () + me g (ni)l=h, +im
J .
Here subscript r and i refer to the real and imaginary part of the values.

Separating into real and imaginary parts

(A4 m: 8 (ngj) + Ay o (0:3)] = by mﬁ

z
=1

4
()

z

st e

[Al”j a(n’j)'Aij m B(noj )] = h!‘ﬂ

Taking the limit of the right hand side of the first equations as m,+ ©
we obtain
o ) 4
J_E] Apg [a (nyj) +mg 8 (nj)]l =h.
4

n
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One can see therefore that all Aj' s, j = 1,2... have real values.
As a special case let's take a floating disc. This can be expressed
as a limiting case where d~h. One can show that for this case the equation

4.4 has a diagonal matrix and the unknown AJ s are given by

- n
Ag=-%%}%- n=1,2...

2
8- 43" w1

Since all sine terms in equation 4.12 are equal to zero. The added mass
of the circular disc in heaving motion for w+o0 is obtained as

::::—‘;-—z-p @iz s@-B@ E b %—g-%%) (4.18)
In another 1imiting case where d goes to zero, again all the sine

terms in equation 4.12 are equal to zero and the coefficient matrix becomes
diagonal. In this case one can show that as w and d go to zero the heavé
added mass in fact is infinite. According to this present theory one can
conjecture that for d<h and at finite h the heave added mass remain finite

at low frequencies but noes to infinity for infinite depth.

5. NUMERIC SOLUTION AND RESULTS.

The specific formulas used for the calculation of added mass and damping
coefficients are given in the Appendix. The required routines for the
calculation of Bessel functions and solution of linear equation are obtained
from IMSL computer library. The computations were done at the U. S. Naval
Academy. The results for heave were first compared to the results published
by Garrison (1975) and Kritis (1979). The results are given in Figure 2.
Added mass values obtained by this theory compared well with those of
Kritis while Garrison's number are observed to be higher. The damping

coefficients for heave are observed to be less than the values reported

12
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by Kritis (1979) and they were observed to agr@e better with those of Garrison.

The heave added mass and damping coefficients are also compared with
the experimental data reported by McCormick, et al (1980).

Figure 3 shows experimental data and theoretical values computed for
w = 3 rad/sec. In this diagram added mass value is nondimensionalized by
the total mass of the cylinder of height equal to the depth of water.

This is expressed in the diagram as ANU/MH. The experimental data are
observed to remain above the theoretical curve the best correlation is
observed at about depth/radius values equal to 7.

Experimental and theoretical damping coefficients are compared
in Figure 4. Experimental values remained above the theoretical calculation
while showing similar trends. This discrepency can be possibly explained
by the viscous damping neglected by the theory. The numerical results are
also tested with those reported by J. Bai (1976) and the results for added
mass and damping coefficients are observed to agree with in a derivation of
3 percent. In all calculations the infinite series are represented by
20 terms.

The heave added mass values for different water depths and draft values
are given in Figures 5 to 11. The general behavior of the curves is that as the
frequency increases the values remain constant. At zero frequency numerically
at least the added mass values are observed to increase. The behavior of
the curves at small frequency is discussed in section 4. Damping coefficients
for heave are given in Figures 12 to 17. At high frequencies these values
are observed to tend to zero while at zero frequency the values are finite
at shallow depth and tend to approach zero as the depth increases. Higher
values are observed to correspond to small draft to radius values. Deep

water cases correspond to h/a = 20.

13




The sway calculations are compared to the results published by
Bai, Yeung (1974) and are presented in Figure 19. This computation tends to
follow the values computed by Bai while the values reported by Isshiki
remained low especially at peak values. Figures 20 to 25 show the sway

added mass values. Added mass values are observed to increase as draft
to radius is increased at all depths. These values also remained finite {
at small frequencies. A1l curves are observed to have a local maximum at #
about v = 1. Damping coefficients for sway are equal to zero at zero

frequancies and are observed to increase as the draft increases. The curves L
for damping coefficients are given in Figures 26 to 31. At high frequencies
the curves show a decreasing slope and the maximum values are again observed ‘

at about v = 1. Pitch computations are first checked with those reported by Bai

and Garrison and a good agreement is observed.

Pitch moment of inertias are presented in Figures 32 to 37. Except 1

at very small drafts the curves have a very small slope. Inertia coefficients
are observed to decrease as draft increases at shallow waters while in

deep water higher coefficients correspond to higher drafts. Figures 38 to

e MR . NN

43 give thepitch damping coefficients. At shallow water (h/a = 1 h/a = 3)
high damping coefficients correspond to small drafts while at deep water

(h/a = 20) high damping coefficients are observed to correspond to high

drafts. A peculiar curve is seen in Figure 42 for T/A = 0.1 which suggests

that the damping coefficient for very shallow disks increases as draft

decreases even at moderately deep waters. Pitch induced sway added mass

(‘61) and pitch induced sway damping coefficients bslare91Venfn igure 44-46.
It is interesting to note that some of these values are in fact negative

for low drafts at finite depths such as hya = 3 but as the draft increases

the values become positive.

14
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CONCLUSION

The solution presented in this paper offers a quick calculation of

the hydrodynamic coefficients for a simple vertic&d[circular cylinder.

The results are compared to some available experimental numerical results.
The agreement with numerical results are observed to be satisfactory. The
comparisons with the experimental showed that even though the trend is

well represented the amplitudes are not. This is partially acceptable at
least for the case of damping coefficients where the viscous resistance
must be effective. The input variables are water depth, radius of cylinder
and its draft. Well documented routines can be used for the calculation of
special functions and the solution of the linear equations. The necessary
formulas for computer application are also presented.

The hydrodynamic coefficient to study the motion of the cylinder are
presented in graphical format. It is hoped that this will increase the
efficiency of future designs and that the designer will be able to estimate
these coefficients rather precisely for his computations.

The Timit of the heave added mass value for zero frequency is also
discussed. It is shown that this quantity remains finite for finite depth
and goes to infinity for infinite water depth. Special formulations are
seen to be required for this limiting case.

The present formulation is currently extended to cylinders with vari-
able cross sections.




APPENDIX
FORMULAS FOR COMPUTER APPLICATIONS
A-Heave
The linear set of equations for compiex coefficients
Y.nj Aj = hn

is solved first. The expression for Tnj and hn are given below

. 32 U;Tp, (ng)

» K (ma)
_ . 0" q 3

m=%¢LpJLM+§]§%§;%Hm)-%%%*i[;adWJmQ]
where B
UJ.=J'21 -13—2;—1;:";_)) i=1,2,3...
o ‘vd
(-D™ (md sh (m d))?
(2 n) + shizm m)1C(m ) + (m)Z10(md)? + (3]

Po(n,j) =

(4w”(%dﬁm%uﬁ

P (n,3 =
ST Lamh) + sin(@m m1i(mgd)? - (1) - ()%

) Jo(mga) Jq (moa) + Yo(mya) Yq(ma)
[J1(mc,a)l2 + [Yl(moa)lz

)
[9,(m )1 + (¥, (m2)1°




The added mass and damping coefficients are then computed by the following

equation:
a b 2 ® n nra
2 ,.°2_d 1 1 a 1 2 (d A (-1) 1I,(7)
D tiod haz 8@ *zhtr (@D 1°d

n=l -n I (nma
of d‘)

where a5, b22 are the added mass and damping for heave, D is the volume

of the cylinder in water.

B. Sway
The Tinear set of equations for sway can be written in the form:

A - h

g %5 M
where

oo on . . 32¢
g+ 16U GIL-Po(n.d) + 2 Do-Pe(n.d)I} - Eon U; - T-P, (n,d)

={_6
g=1 9

Ynj n

. ad . . D - 5167,
h, =8 (L Po(n,o)K0 +k£1 Dq Pq(n,o)Kk} 1um°a T Po(n,o)Ko

n
and where
.1 (3%
= qd7 ., 0 .d - _d_ fi = _d
Uj {2 I_' (J_'Zi) za} or 1’29 . - and UO = Ta—

2 2 2 2
T= ([3,(ma) + Y(ma)l + (ﬁisye [3;(m,a) + Y (mja)] - ﬁf;

[94(mya)d (ma) + vo(moa)v](moam"

2
L = (19,(ma)dy(ma) + ¥ (m a) ¥;(ma)] - ﬁi; (9,(mga) + Y, 2(m 2) 37

sh(m_h) - sh(m_d) sin(m_h) - sin(m_d)
KO = { oSh(m d)f ° } . K o= { qi L}
o q s n(qu)

mqa

Dkz-

K(ﬁa)’q=],2'3’...

T+ma o
q K]lm a)

q




The definition for Po and pq remain the same as in heave.

The sway added mass and damping coefficients are obtained as

ayy b]] ) [sh(moh)-sh(mod)] w K](mka)[sin(mqp)-sin(qu)]
;ﬁ—+ ] woD -~ " {BOH](moa) 5 + I Bq I
No mo(h-d) q=1 Nk mq(h-d)
where \ 34]
. Yo -
Bq - hqualaS {4a d qu +n:l A Un Eqn} * hmq F-{a)

n=0,1,2,.. g9q=0,1, 2, ...

(-1)"™, 2m d sh(m,d)
0 (myd)? + (nm)?

n, -% .
E (-1) Ny ““2m d s1n{qu)
an [(qu)? - ()4

g 1= 1_No-% (sh mh - shmyd, .1 \-% [sin(Tgh) - sin(mqg)]

o a fq  a 'q
m, M
and

N = %_(] + sinhgzmoh )

0 Zmoh

sin(2m_h)

Ny = 3 (1 + ——3—)

q 2m°h




o

C. PITCH

The linear set of complexed valued equations is

Ynj Aj?' hn n= 0’192 [ j = 0, ]' 2 LIS
where
- . Y eeon . . 32
Yo ={ -8, +16UjIL Po(nsd) +q§] D Pq(n.J)]} - i 3
- 16
h, = 8 {L-P_(n,0)- 0 +q§] Dq -Py(ns0)-op} -A ma “T-Py(n,0) &
S | ( ra/d) ;
s = - = .d— - = 0 h# a
U = O Trvaray for BNz Yot gg s epit G L]
2 ch(m_h)-2ch(m_d)
= (3 _h_ 3 1 0 0
%= Uz-q-8ld *mae!* washma

a2 cos(mqh) 2¢ch(m d)
q'{[?' - 3@ '(_szd] Tmcnsm(md) }

(0]
1}

n
= (8L @y forn=1,2,3, ... o= (3@ -1 @ 1forn=-o

%o
The expressions for Po’ Pq, L, T, D remain the same as defined for sway.

q
The roll (Pitch) added moment of inertia is calculated as

a.. +1ib
66 66/uw d
[t H (m r) B, * z (m a) B
0
2 2 ® DnI (nﬂa)
1 ,a 1 (a 1,a 1 (-1)
gl -5 ) +g@ A i-nzl n (nra) Fl2




The expression for Bo’ B_ remain the same except the B* values for roll are

q
given by
- 3 h 3 2 1 sh(m_d) ch{(m_h) - 2ch(m d)
1= 3_h_30 0 o' \To
Bo=MN Uz a8 *waz! mar * md)? } i
.4'
5 1a r]% i’ 3 h. 2(1)2- 1 : sin(mqﬂ ) cos(mqh)-z Eos(qu)
q q 2 d”8\d m_d (m_d) {m d)¢
q q q
and the expressions for to and tq are ;
sh(m d) ch(m h) - ch(m_d) ,,
to={(]'%) mg * 0(md)z — ) 3
() (V)
‘ sin(m d) cos(m_h) - cos(m_d)
t =(1-0 Q. 9 q
q d qu (qu)
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